Exercise III

- 1. Sketch the graph of each of the following functions: (i) $y = 10^x$, (ii) $y = 2^x$, (iii) $y = 3^{-x}$, (iv) $y = 3^{-x^2}$ (v) $y = e^x$, (vi) $y = e^{-x^2}$, (vii) $y = \log_{10}(x)$, (viii) $y = \log_2(x)$, (ix) $y = \log_e(x)$.
- 2. Determine whether each of the functions in question 1 is bounded above, bounded below, bounded respectively.
- 3. Sketch the graph of a function f with domain [1,5], $f(1) \neq f(5)$, which does not take on all values between f(1) and f(5)
- 4. Find the solution sets for each of the following inequalities: (i) |x-3|+7 < 12; (ii) |4x+24| < 12; (iii) 2|x+4| = 16.
- 5. (i) Use absolute value notation to express the fact that a real number x is less than a distance 0.5 from 1 on the number line.
 - (ii) Use interval notation to describe the set of real numbers which are less than a distance 0.5 from 1 on the number line.
- 6. Express each of the following series as an infinite decimal:
 - (i) $\sum_{k=1}^{\infty} \frac{1}{10^{\frac{k(k+1)}{2}}}$, (ii) $\sum_{k=1}^{\infty} \frac{3}{10^{k^2}}$.
- 7. For each of the following find a number T such that $|a_n L| < \epsilon$ for all n > T.
 - (i) $a_n = \frac{n+1}{n}, L = 1, \epsilon = \frac{1}{6};$
 - (ii) $a_n = \frac{2n}{3n+2}, L = \frac{2}{3}, \epsilon = \frac{1}{24};$ (iii) $a_n = \frac{(-1)^n}{n}, L = 0, \epsilon = 0.2.$

Sketch a suitably annotated graph which will illustrate each of the above.

The first one is done for you below:

