Exercise III

1. Sketch the graph of each of the following functions:
(i) $y=10^{x}$, (ii) $y=2^{x}$, (iii) $y=3^{-x}$, (iv) $y=3^{-x^{2}}$
(v) $y=e^{x}$, (vi) $y=e^{-x^{2}}$, (vii) $y=\log _{10}(x)$,
(viii) $y=\log _{2}(x)$, (ix) $y=\log _{e}(x)$.
2. Determine whether each of the functions in question 1 is bounded above, bounded below, bounded respectively.
3. Sketch the graph of a function f with domain $[1,5], f(1) \neq f(5)$, which does not take on all values between $f(1)$ and $f(5)$
4. Find the solution sets for each of the following inequalities:
(i) $|x-3|+7<12$;
(ii) $|4 x+24|<12$;
(iii) $2|x+4|=16$.
5. (i) Use absolute value notation to express the fact that a real number x is less than a distance 0.5 from 1 on the number line.
(ii) Use interval notation to describe the set of real numbers which are less than a distance 0.5 from 1 on the number line.
6. Express each of the following series as an infinite decimal:
(i) $\sum_{k=1}^{\infty} \frac{1}{10^{\frac{k(k+1)}{2}}}$,
(ii) $\sum_{k=1}^{\infty} \frac{3}{10^{k^{2}}}$.
7. For each of the following find a number T such that $\left|a_{n}-L\right|<\epsilon$ for all $n>T$.
(i) $a_{n}=\frac{n+1}{n}, L=1, \epsilon=\frac{1}{6}$;
(ii) $a_{n}=\frac{2 n}{3 n+2}, L=\frac{2}{3}, \epsilon=\frac{1}{24}$;
(iii) $a_{n}=\frac{(-1)^{n}}{n}, L=0, \epsilon=0.2$.

Sketch a suitably annotated graph which will illustrate each of the above.
The first one is done for you below:

